
Dave Voutila <dv@openbsd.org>, EuroBSDCon 2024

OpenBSD’s vmd(8) Hypervisor & 
Multi-processing — 2 Years Later

fork& 

exec& 

fork& 

exec.

mailto:dv@openbsd.org


Dave Voutila (dv@)

Vermont �, USA ꂗ쩙 

(40 mins from Québec ꂗ줰) 

Maple (8) & Moxie (3) are featured throughout (and 

one of their dog friend, Fritz).



What am I going to talk about?
or: why should you stick around and not go grab coffee ☕

• In Tokyo and Ottawa, presented new multi-processing VM model for vmd(8) 

• Today, we’ll look at the lessons learned: good, the bad, and the ugly!


• vmd(8) is a good example of “privsep”, IPC, and OpenBSD’s imsg


• For some definition of good �


• And, if we’re lucky, a glimpse into the future of vmd(8)



Multi-process the what now? �



Hypervisors are High Value Targets
Why do you rob a bank? It’s where the money is. �

• If it’s networked, it’s vulnerable.  

• In practice, a lot of VMs are networked.


• “It’s ok, I’m running it in a vm.”


• The majority of hypervisor escapes are through emulated devices:


• CVE-2015-3456 — QEMU floppy disk controller


• CVE-2015-7504 — QEMU network device


• CVE-2020-3967 — VMWare EHCI controller


• OpenBSD 6.8/6.9 — DHCP packet handler stack overflow

https://www.cve.org/CVERecord?id=CVE-2015-3456
https://www.cve.org/CVERecord?id=CVE-2015-7504
https://www.cve.org/CVERecord?id=CVE-2020-3967
https://ftp.openbsd.org/pub/OpenBSD/patches/6.8/common/025_vmd.patch.sig


Multi-process QEMU
First Type-2 open source hypervisor doing this?

• Oracle started work in 2017, landed in QEMU December 2020


• Elena Ufimtseva, Jag Raman, John G. Johnson


• https://lists.gnu.org/archive/html/qemu-devel/2020-12/msg00268.html 


• …but, who uses it? 

• I’d presume Oracle Cloud!


• Documentation is primarily about design, points to a wiki…last updated in 2020?! 

• Additional burden placed upon the poor administrators � 

https://lists.gnu.org/archive/html/qemu-devel/2020-12/msg00268.html


But let’s talk about OpenBSD �



vmm(4)/vmd(8)
OpenBSD’s native hypervisor — “then” (7.3 and earlier)

• Originally released with OpenBSD 5.9 (March, 2016) 
by mlarkin@ & reyk@


• Currently amd64 only with support for both amd64 
and i386 guests (arm64 support “has started”)


• Adopted privilege separation design


• fork+exec —> chroot(2) & pledge(2) 

• drop from root to _vmd


• Components


• vmm(4) — in-kernel VM monitor


• vmd(8) — userland VM daemon


• vmctl(8) — userland VM control utility



vmm(4)/vmd(8)
OpenBSD’s native hypervisor — “now” (7.4 - current)

• Proper re-exec by vmm process to 
give each VM their own address 

space layout, pledge(2)s, and 
files


• Borrowed approach from 
OpenSSH to deal with the fact 

vmm process uses chroot(2) & 

unveil(2)


• Emulated VirtIO devices are 

fork+exec’d from the VM 
process



The Good  � � �



Security! But at what cost?
What about the user/admin experience? Does it change?

• OpenBSD 7.3 and earlier


# rcctl -f start vmd 

# vmctl start -Lc -d disk.qcow2 -m 8g guest 

• OpenBSD-current


# rcctl -f start vmd 

# vmctl start -Lc -d disk.qcow2 -m 8g guest



Security! But at what cost?
What about the user/admin experience? Does it change?



Vectorized IO and Zero-copy
Multi-process VirtIO makes things easier to hack on (1/2)

• For raw disks, the vioblk device can now use 

p{read,write}v(2)


• Simpler code reading/writing from the guest buffers


• This was a net-negative diff! (~80 lines shorter)


• Lower average host CPU utilization under io load


• Guests with more advanced VirtIO usage benefit 
the most *cough*linux*cough*


• Adapted to VirtIO network device emulation as well



Full(ish)-Duplex VirtIO Networking!
Multi-process VirtIO makes things easier to hack on (2/2)

• Original vionet device had a major flaw: one side could starve 
the other


• 3 event-loops/threads: main/control, transmit (tx), receive (rx)


• Uses pipe(2)’s as channels between threads


• Simplifies packet injection for vmd(8)’s internal DHCP 
service


• “local” interfaces in vmd(8) intercept DHCP requests on 
tx-side, pass to rx-side via passing a pointer via a 

pipe(2)


• Reduced average latency, better CPU utilization 



The Bad  � �



An IPC Headache
Pain is really just a deviation from you current baseline.

• Synchronous Channel


• Bootstrapping device config post-execvp(2)


• VirtIO PCI register reads need to block vcpu


• Asynchronous Channel


• Lifecycle events (vm pause/resume, shutdown)


• Assert/Deassert IRQ


• Set host MAC address (vionet)



High-level Message Flow
Sorry for my artwork ꊗ쨩

1. Guest fills buffers, updates 

virtqueues, etc.


2. Guest writes to Device register 
via IO instructions (note: not 
using mmio yet) causing VM exit 

3. Device is notified it can process 
data. Performs write(2)


4. Device kicks guest via vcpu 
interrupt to notify buffers are 
processed



The Ugly  � �



Multi-process means shared memory
Sort of simple on the surface...handled via an ioctl(2)

• …a new vmm(4) ioctl(2) appears! (VMM_IOC_SHAREMEM)


• If and only if:


• You have an open fd to /dev/vmm 

• You know all the vm_mem_ranges for a given vm id

• You have the vmm and proc promises (in a pledged 
program)

• …it will create a shared UVM anonymous mapping into your 
process’s virtual address space



Multi-process means shared memory
Shared memory leads to chasing UVM ghosts �

• Multiple processes sharing UVM mappings really puts 
pressure on OpenBSD’s UVM & pmap layers


• Been chasing a corruption for ~2 years now!


• As we unlock more of the kernel, more fireworks 
happen


• Intel EPT pmaps are still a WIP � 


• I’ve floated some diffs, but won’t make 7.6 release


• Intel always makes things interesting



Looking forward  �



Future Work & Research
Plans for the next hackathon? �

• SMP-ification at some point


• honestly…not the most interesting thing to me!


• arm64 — have the hardware, don’t have the time �


• ipcgen(1) — my current thought experiment on simplifying vmd’s most confusing part…
the ipc plumbing


• IDL for defining IPC message flows and fd-passing


• file descriptor passing is major pain when needing to pass a variable number of 
them…like qcow2 images!


• Thought is to push imsg and event loop code behind code generator


• Could make it easier to contribute and improve quality



Confidential Computing with vmd(8)
Bringing AMD’s SEV to OpenBSD’s guest vms.

• Check out Hans-Jörg Höxer’s talk tomorrow (Sunday)!



Thanks!

See you next year, maybe?


